首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13903篇
  免费   2430篇
  国内免费   1652篇
化学   7277篇
晶体学   234篇
力学   566篇
综合类   98篇
数学   796篇
物理学   9014篇
  2024年   21篇
  2023年   131篇
  2022年   233篇
  2021年   331篇
  2020年   461篇
  2019年   430篇
  2018年   423篇
  2017年   412篇
  2016年   584篇
  2015年   508篇
  2014年   563篇
  2013年   1509篇
  2012年   752篇
  2011年   902篇
  2010年   705篇
  2009年   915篇
  2008年   917篇
  2007年   918篇
  2006年   877篇
  2005年   764篇
  2004年   686篇
  2003年   693篇
  2002年   588篇
  2001年   437篇
  2000年   486篇
  1999年   346篇
  1998年   283篇
  1997年   223篇
  1996年   206篇
  1995年   194篇
  1994年   208篇
  1993年   170篇
  1992年   154篇
  1991年   126篇
  1990年   107篇
  1989年   95篇
  1988年   76篇
  1987年   58篇
  1986年   76篇
  1985年   66篇
  1984年   68篇
  1983年   17篇
  1982年   34篇
  1981年   41篇
  1980年   32篇
  1979年   26篇
  1978年   21篇
  1977年   22篇
  1976年   18篇
  1973年   28篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
A known trinuclear structure was used to design the heterobimetallic mixed-valent, mixed-ligand molecule [CoII(hfac)3−Na−CoIII(acac)3] ( 1 ). This was used as a template structure to develop heterotrimetallic molecules [CoII(hfac)3−Na−FeIII(acac)3] ( 2 ) and [NiII(hfac)3−Na−CoIII(acac)3] ( 3 ) via isovalent site-specific substitution at either of the cobalt positions. Diffraction methods, synchrotron resonant diffraction, and multiple-wavelength anomalous diffraction were applied beyond simple structural investigation to provide an unambiguous assignment of the positions and oxidation states for the periodic table neighbors in the heterometallic assemblies. Molecules of 2 and 3 are true heterotrimetallic rather than a statistical mixture of two heterobimetallic counterparts. Trinuclear platform 1 exhibits flexibility in accommodating a variety of di- and trivalent metals, which can be further utilized in the design of molecular precursors for the NaMM′O4 functional oxide materials.  相似文献   
82.
Triene 6π electrocyclization, wherein a conjugated triene undergoes a concerted stereospecific cycloisomerization to a cyclohexadiene, is a reaction of great historical and practical significance. In order to circumvent limitations imposed by the normally harsh reaction conditions, chemists have long sought to develop catalytic variants based upon the activating power of metal–alkene coordination. Herein, we demonstrate the first successful implementation of such a strategy by utilizing [(C5H5)Ru(NCMe)3]PF6 as a precatalyst for the disrotatory 6π electrocyclization of highly substituted trienes that are resistant to thermal cyclization. Mechanistic and computational studies implicate hexahapto transition-metal coordination as responsible for lowering the energetic barrier to ring closure. This work establishes a foundation for the development of new catalysts for stereoselective electrocyclizations.  相似文献   
83.
The electronic (energy gap and work function) as well as electrical properties (dipole moment, polarizability, and first hyperpolarizabilities) of the first-row transition metals decorated C24N24 cavernous nitride fullerene were explored using DFT calculations. The transition metals are decorated at N4 cavity of C24N24 fullerene. According to our spin polarized computations, the most stable spin state monotonically increases to sextet for Mn@C24N24 and thereafter dropped off gradually to singlet state for Zn@C24N24 system. The findings demonstrate that transition metals can remarkably decrease the HOMO-LUMO energy gap and work function values up to 63% and 21% of bare C24N24, respectively. As can be seen, when the Sc and Ti metals are located above the N4 cavity of fullerene, systems of enhanced static hyperpolarizabilities (β0) are delivered. These findings might provide an effective strategy to design high performance eletcro-optical materials based on carbon- nitride fullerene.  相似文献   
84.
A structurally stable, 3d-4f heterometallic coordination polymer has been solvothermally synthesised and evaluated for its accomplished materials properties. The light absorption activity in the visible band was higher for unique Ce-Fe MOF than that of the homometallic Ce-MOF or Fe- MOF. The intimate overlap of two different metal clusters in heterometallic environmental induced the formation of low line conduction orbital, which ultimately lowered the transition energy. The heterometallic acquired an additional sensitisation from a Fe-μ3-oxo cluster that had vibrantly enhanced the light uptake activity. The vacancy created in the 6s, 5d orbital of Ce in Ce-Fe MOF contributed to the photo-excitation of electrons and reduced the recombination time. This distinct intramolecular arrangement assisted the exciton trapping characteristic. Also, the presence of multiple metal cores in the framework aided to confine the increased number of excitons for a redox reaction. The solar photocatalysis study with acetaminophen revealed these improved materialistic features by degrading it 94.6% with a rate constant of 0.0137 min−1. The recycle studies confirmed the robust stability of the synthesised MOF.  相似文献   
85.
Using high-resolution transmission electron microscopy and electron energy-loss spectroscopy, we show that beryllium oxide crystallizes in the planar hexagonal structure in a graphene liquid cell by a wet-chemistry approach. These liquid cells can feature van-der-Waals pressures up to 1 GPa, producing a miniaturized high-pressure container for the crystallization in solution. The thickness of as-received crystals is beyond the thermodynamic ultra-thin limit above which the wurtzite phase is energetically more favorable according to the theoretical prediction. The crystallization of the planar phase is ascribed to the near-free-standing condition afforded by the graphene surface. Our calculations show that the energy barrier of the phase transition is responsible for the observed thickness beyond the previously predicted limit. These findings open a new door for exploring aqueous-solution approaches of more metal-oxide semiconductors with exotic phase structures and properties in graphene-encapsulated confined cells.  相似文献   
86.
Electronic structure and spin-related properties of CoI2/NiI2 heterostructure were studied by means of density functional theory. It was shown that the electronic structure at the Fermi level can be characterized by a band gap. The effect of the external electric field on charge transfer and electronic properties of the CoI2/NiI2 interface was investigated, and it was found that band gap width depends on the strength of the applied electric field, switching its nature from semiconducting to a half-metallic one. An easy control of the electronic properties and promising spin-polarized nature of the CoI2/NiI2 spinterface allows the heterostructure to be used in spin-related applications.  相似文献   
87.
This study reports the synthesis of sulfonamide-derived Schiff bases as ligands L 1 and L 2 as well as their transition metal complexes [VO(IV), Fe(II), Co(II), Ni(II), Cu(II), and Zn(II)]. The Schiff bases (4-{E-[(2-hydroxy-3-methoxyphenyl)methylidene]amino}benzene-1-sulfonamide ( L 1 ) and 4-{[(2-hydroxy-3-methoxyphenyl)methylidene]amino}-N-(5-methyl-1,2-oxazol-3-yl)benzene-1-sulfonamide ( L 2 ) were synthesized by the condensation reaction of 4-aminobenzene-1-sulfonamide and 4-amino-N-(3-methyl-2,3-dihydro-1,2-oxazol-5-yl)benzene-1-sulfonamide with 2-hydroxy-3-methoxybenzaldehyde in an equimolar ratio. Sulfonamide core ligands behaved as bidentate ligands and coordinated with transition metals via nitrogen of azomethine and the oxygen of the hydroxyl group. Ligand L 1 was recovered in its crystalline form and was analyzed by single-crystal X-ray diffraction technique which held monoclinic crystal system with space group (P21/c). The structures of the ligands L 1 and L 2 and their transition metal complexes were established by their physical (melting point, color, yields, solubility, magnetic susceptibility, and conductance measurements), spectral (UV–visible [UV–Vis], Fourier transform infrared spectroscopy, 1H NMR, 13C NMR, and mass analysis), and analytical (CHN analysis) techniques. Furthermore, computational analysis (vibrational bands, frontier molecular orbitals (FMOs), and natural bonding orbitals [NBOs]) were performed for ligands through density functional theory utilizing B3LYP/6-311+G(d,p) level and UV–Vis analysis was carried out by time-dependent density functional theory. Theoretical spectroscopic data were in line with the experimental spectroscopic data. NBO analysis confirmed the extraordinary stability of the ligands in their conjugative interactions. Global reactivity parameters computed from the FMO energies indicated the ligands were bioactive by nature. These procedures ensured the charge transfer phenomenon for the ligands and reasonable relevance was established with experimental results. The synthesized compounds were screened for antimicrobial activities against bacterial (Streptococcus aureus, Bacillus subtilis, Eshcheria coli, and Klebsiella pneomoniae) species and fungal (Aspergillus niger and Aspergillus flavous) strains. A further assay was designed for screening of their antioxidant activities (2,2-diphenyl-1-picrylhydrazine radical scavenging activity, total phenolic contents, and total iron reducing power) and enzyme inhibition properties (amylase, protease, acetylcholinesterase, and butyrylcholinesterase). The substantial results of these activities proved the ligands and their transition metal complexes to be bioactive in their nature.  相似文献   
88.
《化学:亚洲杂志》2018,13(19):2939-2946
The facile preparation of platinum‐based catalysts with designed compositions and structures is of great importance for fuel cells. In this work, a one‐pot method is developed to synthesize monodispersed trimetallic PtPdCo mesoporous nanoparticles (PtPdCo MNs) with uniform morphology and size. The proposed synthetic method does not require any hard template or organic solvent, which greatly simplifies the preparation procedure. PtPdCo MNs, with a highly porous structure, exhibit enhanced electrocatalytic activities and excellent stabilities for both the formic acid oxidation reaction and the oxygen reduction reaction, relative to bimetallic PtPd MNs and commercial Pt/C catalyst. The proposed synthetic method is highly valuable for the design of mesoporous multimetallic catalysts for fuel cells.  相似文献   
89.
Previously, master equation (ME) simulations using semiclassical transition state theory (SCTST) and high-accuracy extrapolated ab initio thermochemistry (HEAT) predicted rate constants in excellent agreement with published experimental data over a wide range of pressure and temperatures ≳250 K, but the agreement was not as good at lower temperatures. Possible reasons for this reduced performance are investigated by (a) critically evaluating the published experimental data and by investigating; (b) three distinct ME treatments of angular momentum, including one that is exact at the zero- and infinite-pressure limits; (c) a hindered-rotor model for HOCO that implicitly includes the cis- and trans-conformers; (d) possible empirical adjustments of the thermochemistry; (e) possible empirical adjustments to an imaginary frequency controlling tunneling; (f) including or neglecting the prereaction complex PRC1; and (g) its possible bimolecular reactions. Improvements include better approximations to factors in SCTST and using the Hill and van Vleck treatment of angular momentum coupling. Evaluation of literature data does not reveal any specific shortcomings, but the stated uncertainties may be underestimated. All ME treatments give excellent fits to experimental data at T ≥ 250 K, but the discrepancy at T < 250 K persists. Note that each ME model requires individual empirical energy transfer parameters. Thermochemical adjustments were unable to match the experimental H/D kinetic isotope effects. Adjusting an imaginary frequency can achieve good fits, but the adjustments are unacceptably large. Whether PRC1 and its possible bimolecular reactions are included had little effect. We conclude that none of the adjustments is an improvement over the unadjusted theory. Note that only one set of experimental data exists in the regime of the discrepancy with theory, and data for DO + CO are scanty.  相似文献   
90.
Solid-state continuous wave (cw) electronic paramagnetic resonance (EPR) spectroscopy is particularly suitable for metal complex analysis. Extracting magnetic parameters by simulation is often necessary to describe the electronic structure of the studied molecular compounds that can have various electronic spin states and characterized by different parameters like g-values, hyperfine coupling or zero field splitting values. Easyspin toolbox on MATLAB is a powerful tool, but for the user, it requires spending time with coding and could discourage nonexperts. Facing this context, we have developed a graphical user interface called Simultispin, dedicated to solid-state cw-EPR spectra simulation. Some examples of experimental spectra of metal complexes (mixture of low spin and high spin FeIII complexes, dynamic disorder of a CuII complex, photogeneration of a MnIII complex), highlighting specific solid-state functions, are described and analyzed based on simulations performed with Simultispin. We hope that its ergonomy and the ease to set up a complete set of parameters to get reliable simulations could help a large EPR community to improve the efficiency of their interpretations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号